Solutions of Assignment 5

Q1. For any $i \in I$, as f_i are family of convex functions defined on $\mathcal{X} \to [-\infty, +\infty]$, so we have for any $x, y \in \mathcal{X}$, and $\lambda \in (0, 1)$, we have

$$f_i(\lambda x + (1 - \lambda)y) \le \lambda f_i(x) + (1 - \lambda)f_i(y)$$

Put $f := \sup_{i \in I} f_i$, then we have $f_i \leq f$ for all $i \in I$. So, by fixing $i \in I$ but arbitrary, then we have

$$f_i(\lambda x + (1 - \lambda)y) \le \lambda f_i(x) + (1 - \lambda)f_i(y) \le \lambda f(x) + (1 - \lambda)f(y)$$

So, we have

$$\lambda f(x) + (1 - \lambda)f(y) \ge \sup_{i \in I} f_i(\lambda x + (1 - \lambda)y) = f(\lambda x + (1 - \lambda)y)$$

Thus, this proves that $f = \sup_{i \in I} f_i$ is convex.

Q2. (a) Since f_1, \ldots, f_k are convex functions, so for any $x, y \in \bigcap_{i=1}^k \operatorname{dom}(f_i)$ and $\lambda \in (0, 1)$, we have

$$f_i(\lambda x + (1 - \lambda)y) \le \lambda f_i(x) + (1 - \lambda)f_i(y), \quad \forall i \in \{1, \dots, k\}$$

Multiplying $w_i \ge 0$ on both sides yields

$$w_i f_i \left(\lambda x + (1 - \lambda) y \right) \le \lambda w_i f_i(x) + (1 - \lambda) w_i f_i(y), \quad \forall i \in \{1, \dots, k\}$$

Taking summation on both sides for i from 1 to k will give

$$\sum_{i=1}^{k} w_i f_i \left(\lambda x + (1-\lambda)y\right) \le \sum_{i=1}^{k} \left(\lambda w_i f_i(x) + (1-\lambda)w_i f_i(y)\right)$$
$$= \lambda \sum_{i=1}^{k} w_i f_i(x) + (1-\lambda) \sum_{i=1}^{k} w_i f_i(y)$$
$$f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y)$$

This proves $f(x) = \sum_{i=1}^{k} w_i f_i(x)$ is a convex function.

(b) Put $h := \max(f_1, f_2)$. Then, for any $x, y \in \mathbb{R}^N$ and $0 \le \lambda \le 1$, we have

$$h(\lambda x + (1 - \lambda)y) = \max\left\{f_1(\lambda x + (1 - \lambda)y), f_2(\lambda x + (1 - \lambda)y)\right\}$$

Since $f_1, f_2 : \mathbb{R}^N \to \mathbb{R}$ are convex, so

$$\begin{cases} f_1\left((\lambda x + (1-\lambda)y) \le \lambda f_1(x) + (1-\lambda)f_1(y)\right) \\ f_2\left(\lambda x + (1-\lambda)y\right) \le \lambda f_2(x) + (1-\lambda)f_2(y) \end{cases}$$

Taking maximum on both sides, we have

$$h(\lambda x + (1-\lambda)y) = \max \left\{ f_1 \left(\lambda x + (1-\lambda)y \right), f_2 \left(\lambda x + (1-\lambda)y \right) \right\}$$
$$\leq \max \left\{ \lambda f_1(x) + (1-\lambda)f_1(y), \lambda f_2(x) + (1-\lambda)f_2(y) \right\}$$

and as $\lambda \in (0, 1)$ is a constant thus

$$\max \{ \lambda f_1(x) + (1 - \lambda) f_1(y), \lambda f_2(x) + (1 - \lambda) f_2(y) \}$$

$$\leq \lambda \max \{ f_1(x), f_2(x) \} + (1 - \lambda) \max \{ f_1(y), f_2(y) \}$$

$$= \lambda h(x) + (1 - \lambda) h(y)$$

This proves that $h := \max(f_1, f_2)$ is convex.

Q3. Yes, the implication is true. The proof is proceeded as follows: Strong Convexity \implies Strict Convexity:

Suppose f is strongly convex, then there exists a constant $\rho > 0$ such that for any $x, y \in$ \mathbb{R}^N and $\lambda \in (0, 1)$, then

$$f(\lambda x + (1-\lambda)y) - \frac{\rho}{2} \|\lambda x + (1-\lambda)y\|^2 \le \lambda f(x) - \frac{\lambda\rho}{2} \|x\|^2 + (1-\lambda)f(y) - \frac{(1-\lambda)\rho}{2} \|y\|^2$$

Now we discuss

Now, we discuss

$$\begin{split} &\frac{\rho}{2} \|\lambda x + (1-\lambda)y\|^2 - \frac{\lambda\rho}{2} \|x\|^2 - \frac{(1-\lambda)\rho}{2} \|y\|^2 \\ &= \frac{\rho}{2} \left[\lambda^2 \|x\|^2 + 2\lambda(1-\lambda) \langle x, y \rangle + (1-\lambda)^2 \|y\|^2 - \lambda \|x\|^2 - (1-\lambda) \|y\|^2 \right] \\ &= \frac{\rho}{2} \left[\lambda(\lambda-1) \|x\|^2 + 2\lambda(1-\lambda) \langle x, y \rangle + \lambda(\lambda-1) \|y\|^2 \right] \\ &= \frac{\rho\lambda(\lambda-1)}{2} \left[\|x\|^2 + 2 \langle x, y \rangle + \|y\|^2 \right] \\ &< \frac{\rho\lambda(\lambda-1)}{2} \left[\|x\|^2 - 2\|x\| \|y\| + \|y^2\| \right] \quad (\because \lambda(\lambda-1) < 0 \text{ and } \langle x, y \rangle \ge -\|x\| \|y\|) \\ &= \frac{\rho\lambda(\lambda-1)}{2} \left[\|x\| - \|y\| \right]^2 \\ &< 0 \end{split}$$

Thus, this follows that

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) + \frac{\rho}{2} \|\lambda x + (1 - \lambda)y\|^2 - \frac{\lambda\rho}{2} \|x\|^2 - \frac{(1 - \lambda)\rho}{2} \|y\|^2 < \lambda f(x) + (1 - \lambda)f(y)$$

so f is strictly convex.

Next, to prove that Strict Convexity \implies Convexity:

Suppose f is strictly convex, then for any $x, y \in \mathbb{R}^N$ and $\lambda \in (0, 1)$,

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$

and this is equivalent to

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

and this completes the proof.